Comparisons of Short Term Load Forecasting using Artificial Neural Network and Regression Method
نویسندگان
چکیده
In power systems the next day’s power generation must be scheduled every day, day ahead short-term load forecasting (STLF) is a necessary daily task for power dispatch. Its accuracy affects the economic operation and reliability of the system greatly. Under prediction of STLF leads to insufficient reserve capacity preparation and in turn, increases the operating cost by using expensive peaking units. On the other hand, over prediction of STLF leads to the unnecessarily large reserve capacity, which is also related to high operating cost. the research work in this area is still a challenge to the electrical engineering scholars because of its high complexity. How to estimate the future load with the historical data has remained a difficulty up to now, especially for the load forecasting of holidays, days with extreme weather and other anomalous days. With the recent development of new mathematical, data mining and artificial intelligence tools, it is potentially possible to improve the forecasting result. This paper presents a new neural network based approach for short-term load forecasting that uses the most correlated weather data for training, validating and testing the neural network. Correlation analysis of weather data determines the input parameters of the neural networks. And its results compare to regression method.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملApplication of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کامل